Metabolomics reveals novel pathways and differential mechanistic and elicitor-specific responses in phenylpropanoid and isoflavonoid biosynthesis in Medicago truncatula cell cultures.
نویسندگان
چکیده
High-performance liquid chromatography coupled to ultraviolet photodiode array detection and ion-trap mass spectrometry was used to analyze the intra- and extracellular secondary product metabolome of Medicago truncatula cell suspension cultures responding to yeast elicitor (YE) or methyl jasmonate (MeJA). Data analysis revealed three phases of intracellular response to YE: a transient response in mainly (iso)flavonoid metabolites such as formononetin and biochanin-A that peaked at 12 to 18 h following elicitation and then declined; a sustained response through 48 h for compounds such as medicarpin and daidzin; and a lesser delayed and protracted response starting at 24 h postelicitation, e.g. genistein diglucoside. In contrast, most compounds excreted to the culture medium reached maximum levels at 6 to 12 h postelicitation and returned to basal levels by 24 h. The response to MeJA differed significantly from that to YE. Although both resulted in accumulation of the phytoalexin medicarpin, coordinated increases in isoflavonoid precursors were only observed for YE and not MeJA-treated cells. However, MeJA treatment resulted in a correlated decline in isoflavone glucosides, and did not induce the secretion of metabolites into the culture medium. Three novel methylated isoflavones, 7-hydroxy-6,4'-dimethoxyisoflavone (afrormosin), 6-hydroxy-7,4'-dimethoxyisoflavone (alfalone), and 5,7-dihydroxy-4',6-dimethoxy isoflavone (irisolidone), were induced by YE, and labeling studies indicated that the first two were derived from formononetin. Our results highlight the metabolic flexibility within the isoflavonoid pathway, suggest new pathways for complex isoflavonoid metabolism, and indicate differential mechanisms for medicarpin biosynthesis depending on the nature of elicitation.
منابع مشابه
Integrated metabolite and transcript profiling identify a biosynthetic mechanism for hispidol in Medicago truncatula cell cultures.
Metabolic profiling of elicited barrel medic (Medicago truncatula) cell cultures using high-performance liquid chromatography coupled to photodiode and mass spectrometry detection revealed the accumulation of the aurone hispidol (6-hydroxy-2-[(4-hydroxyphenyl)methylidene]-1-benzofuran-3-one) as a major response to yeast elicitor. Parallel, large-scale transcriptome profiling indicated that thre...
متن کاملDifferent mechanisms for phytoalexin induction by pathogen and wound signals in Medicago truncatula.
Cell suspensions of the model legume Medicago truncatula accumulated the isoflavonoid phytoalexin medicarpin in response to yeast elicitor or methyl jasmonate (MJ), accompanied by decreased levels of isoflavone glycosides in MJ-treated cells. DNA microarray analysis revealed rapid, massive induction of early (iso)flavonoid pathway gene transcripts in response to yeast elicitor, but not MJ, and ...
متن کاملMetabolic profiling of Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism.
GC-MS-based metabolite profiling was used to analyse the response of Medicago truncatula cell cultures to elicitation with methyl jasmonate (MeJa), yeast elicitor (YE), or ultraviolet light (UV). Marked changes in the levels of primary metabolites, including several amino acids, organic acids, and carbohydrates, were observed following elicitation with MeJa. A similar, but attenuated response w...
متن کاملStructural basis for dual functionality of isoflavonoid O-methyltransferases in the evolution of plant defense responses.
In leguminous plants such as pea (Pisum sativum), alfalfa (Medicago sativa), barrel medic (Medicago truncatula), and chickpea (Cicer arietinum), 4'-O-methylation of isoflavonoid natural products occurs early in the biosynthesis of defense chemicals known as phytoalexins. However, among these four species, only pea catalyzes 3-O-methylation that converts the pterocarpanoid isoflavonoid 6a-hydrox...
متن کاملMedicCyc: a biochemical pathway database for Medicago truncatula
MOTIVATION There is an imperative need to integrate functional genomics data to obtain a more comprehensive systems-biology view of the results. We believe that this is best achieved through the visualization of data within the biological context of metabolic pathways. Accordingly, metabolic pathway reconstruction was used to predict the metabolic composition for Medicago truncatula and these p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 146 2 شماره
صفحات -
تاریخ انتشار 2008